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Abstract

The propagation of probabilities in credal networks
when probabilities are estimated with a global impre-
cise Dirichlet model is an important open problem.
Only Zaffalon [21] has proposed an algorithm for the
Naive classifier. The main difficulty is that, in gen-
eral, computing upper and lower probability intervals
implies the resolution of an optimization of a fraction
of two polynomials. In the case of the Naive credal
classifier, Zaffalon has shown that the function is a
convex function of only one parameter, but there is
not a similar result for general credal sets. In this pa-
per, we propose the use of an imprecise global model,
but we restrict the distributions to only the most ex-
treme ones. The result is a model giving rise that in
the case of estimating a conditional probability under
independence relationships, it can produce smaller in-
tervals than the global general model. Its main ad-
vantage is that the optimization problem is simpler,
and available procedures can be directly applied, as
the ones proposed in [7].

Keywords. Locally specified credal networks, global
imprecise Dirichlet model, propagation algorithms,
probability trees.

1 Introduction

Credal networks [12] are an extension of Bayesian net-
works where instead of having a joint precise global
probability distribution we have a closed and convex
set of possible distributions (a credal set [15]). This
credal set produces a conditional credal set for each
variable given its parents. There are two basic possi-
bilities:

e The credal net is separately specified [12], i.e. the
set of joint probability distributions is obtained
by specifying a credal set of conditional prob-
ability distributions for each variable and each
configuration of its parents, and then the joint

credal set is the convex hull of the probability
distributions obtained by multiplying the condi-
tional probability distributions resulting by se-
lecting one element from each conditional credal
set (the joint credal set is the strong extension of
the local conditional credal sets [12]).

e The credal net is globally specified, when only the
joint credal set is given.

Most of the effort to design algorithms for compu-
tation in credal networks has been devoted to the
case of separately specified credal nets. In general,
this computation is equivalent to the resolution of
a combinatorial optimization problem. One of the
most promising approaches is based on the branch-
and-bound technique [17, 7]. Also, there are several
approximate algorithms, as the ones based on the sim-
ulated annealing technique [6] or the ones based on
making the variables binaries in order to apply the
efficient 2U algorithm [13, 3].

There is less work for globally specified credal net-
works. Preliminary models were proposed by Coz-
man [11, 12], but he followed a robust statistics
methodology, considering credal sets that were neigh-
borhoods of standard Bayesian networks. Recently,
Antonucci and Zaffalon [2] have proposed a general
method based on the use of auxiliary variables as in
[5] to transform a globally specified credal network
into a separately specified one. This allows the appli-
cation of existing algorithms for separately specified
networks to cases that initially were non-separately
given.

However, the Antonucci and Zaffalon [2] transforma-
tion can not directly solve some important imprecise
networks that can arise in practice. This is the case of
credal nets in which conditional probabilities are es-
timated from a database of observations with an im-
precise global Dirichlet model (IDM) [20]. The main
problem is that in this situation we need auxiliary
variables with infinite values (as the parameters can



have values in a continuum). If the IDM is locally ap-
plied to each conditional probability distribution (we
consider a different IDM for each variable and each
configuration of its parents), then there is no prob-
lem, as only the extreme parameters are relevant, and
we can apply the transformation by Cano, Cano, and
Moral [5]. This local application was initially pro-
posed in Zaffalon [22]. But its main difficulty was
that it has a tendency to produce too wide intervals
that are too uninformative. For this reason Zaffalon
[21] proposed! a global application of the IDM. This
application has the problem that to compute lower
and upper conditional probabilities, it is necessary
the resolution of an optimization of a fraction of two
polynomials in several parameters. In the case of the
Naive credal classifier, Zaffalon [21] has shown that
the function is a convex function of one parameter,
and he proposes a numerical method for its optimiza-
tion, but there is not a similar result for general net-
works.

In this paper, we propose the use of an imprecise
global model, but we restrict the class IDM to the
set of its extreme distributions. The result is a model
giving rise to the same upper and lower probabilities,
when estimating the uncertainty of a future simple
event, but in the case of estimating a conditional prob-
ability under independence relationships, it can pro-
vide smaller intervals. Its main advantage is that the
optimization problem is simpler, being possible to ex-
press the problem as a locally specified credal network
for which standard algorithms for separately specified
networks can be applied. In order to make the repre-
sentation more efficient, we will represent conditional
probability tables as probability trees as the ones used
in [6, 7].

The paper is organized as follows: in Section 2 the
basic concepts of credal sets and credal networks are
given; in Section 3 we consider the IDM applied to
estimating the probabilities in a credal network and
introduce the extreme IDM; in Section 4 we show the
transformation of a credal network with probabilities
estimated with an IDM model (the general or the ex-
treme one) into a locally specified credal network; in
Section 5 the results of some preliminary experiments
are shown; and finally Section 6 is devoted to the con-
clusions.

2 Credal Networks

Let X be a set of variables. Let us assume that each
variable X € X takes values on a finite set Qx (the
frame of X). We shall use x to denote a generic value
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of X,z € Qx. If Y C X, then this variable will take
values on he Cartesian product ]y y Qx, denoted
by Qy. The elements of Qy are called configurations
of Y and will be written as y.

A credal set about Y is a closed and convex set
of probability distributions on vy, denoted as Kvy.
If the number of extreme points is finite, then this
convex set will be given by enumerating its extreme
points: Ky = CH({Py,..., B}), where CH stands for
the convex hull.

A credal network about variables X is a directed
acyclic graph G, with a node for each X € X and
a credal set Kx such that every extreme distribution
P € Ext(Kx), factorizes according to the graph:

P(x) = [ Plelmx (x)) (1)

where ITx is the set of parents of X in G and 7y (x)
the configuration of these parents corresponding to x.

A credal network is said to be separately specified [16]
if the global credal set Kx can be obtained by giving
a credal set, K (X|mry), for each variable X and each
configuration of its parents mx and then obtaining all
the possible joint probabilities by expression (1).

A locally specified credal set [2] about X is composed
of the following elements:

e The set of variables X.

e An additional set of auxiliary variables which An-
tonucci and Zaffalon [2] call decision variables D.
Each variable D € D takes values in a set Qp.

e A directed acyclic graph G with a node for each
variable in X U D.

e A precise conditional probability distribution for
each variable X € X conditioned to its parents
HX in G.

e Aset Rp(mp) C Qp for each decision variable D
and each configuration of its parent variables mp
in G.

A locally specified credal net can define a credal net
about X UD and another about X, by marginaliza-
tion. These can be obtained by the following proce-
dure:

e Consider for each D € D the family of decision
functions fp : Qm, — Qp, such that fp(np) €
RD(FD),VTFD (S Qﬂ—D.



e Consider the set of strategies, where an strategy
is given by a decision function for each decision
variable.

e Each strategy defines a precise probability distri-
bution: the one obtained by factorization accord-
ing to G and given by the precise probability con-
ditional distributions of each variable X € X and
the degenerate conditional probability distribu-
tions given by the decision functions of the deci-
sion variables of the given strategy: P(d|rp) =1,
if d = fp(np) and 0, otherwise.

e The credal set about X UD is the convex hull of
the probabilities defined from the set of strate-
gies. As the extreme points of this credal set
factorize according to G, they define a credal net-
work.

e The credal set about X is the one obtained by
marginalization of the credal set about X U D
(equivalent to marginalizing each one of the prob-
abilities). This set factorizes on the graph G’ on
X, obtained by deleting nodes in D and connect-
ing with arcs the parents of each decision node
with all its children (if a decision node D has as
parent another decision node D', then we also
have to make a connection from the parents of
D’ to the children of D, and this also recursively
applies to the parents of D’).

The advantage of having a credal set about X locally
expressed is that we can solve the computation of up-
per and lower conditional probabilities, or the domi-
nance relationship [19], by means of an optimization
problem in the set of strategies. If the sets (p are fi-
nite, then both approximate [13, 3, 6] and exact [17, 7]
algorithms able of solving medium size problems are
currently available?.

3 Credal Networks from the
Imprecise Dirichlet Model

In this section we consider that we have a set of vari-
ables X, a graph G and a database with N cases in
which all the variables are observed (there are no miss-
ing data). For each configuration y of a subset of vari-
ables Y C X we can measure the absolute frequency
of it in the database N,. We want to estimate a credal
set for graph G from the observations in the database.

2Most of these algorithms have been initially developed for
separately specified nets, but with some small modifications
they can be applied to locally specified ones. For example, for
the model of this paper we did not need any modification of
the algorithm in [7].

The Imprecise Dirichlet Model (IDM) [20] was intro-
duced for estimating probability values from a set
of observations and has been extensively used by its
good theoretical properties and performance in exper-
iments.

Assume the case of one variable X, if we want to esti-
mate the probabilities P(z) with the precise Dirichlet
model, we have to assume a vector of positive parame-
ters (i )zeqy - The value S = ZIEQX o is called the
equivalent sample size. If we denote the probability
P(z) by 0, then the Dirichlet density is proportional

to [], 62=~'. In these conditions the estimation of the

(Netoaq)
(N+59)

(the expected value of the posterior probability given

the data).

The Imprecise Dirichlet Model (IDM) considers a set
of prior distributions, those obtained by fixing a global
sample size S and considering all the vectors of posi-
tive parameters (a.)zeqy such that S =37 o ay.
This gives rise to an interval estimation (correspond-

ing to all the possible vectors compatible with a given
S) of P(x), which is given by:

probability P(z) for a future event is equal to

[ N, NI+S} @)

N+S N+S8S

Usually a parameter S in the interval [1,2] is consid-
ered, and recently some authors as Bernard [4] advo-
cates for the use of S = 2.

When applying the IDM to obtain the credal set of a
credal network, this can be done in two ways: local
or global. In the local application we obtain a sep-
arable credal network. What we do is to apply an
IDM to each variable X and each configuration of its
parents mx, considering only the part of the database
compatible with configuration 7x, i.e. the cases that
for variables ITx have the same values than in con-
figuration mx. Then we obtain a local set for each
variable and each configuration of its parents: the
probabilities satisfying the intervals in equation (2)
where the frequencies are measured in the restricted
database (same values than the configuration of par-
ent variables). The global credal set is obtained by
strong extension (the convex hull of the set of all the
probabilities equal to the multiplication of a condi-
tional probability distribution for each variable given
its parents, where this conditional probabilities are
selected from the local conditional credal sets).

This was the method initially employed, but soon
it was noticed that it can produce too wide poste-
rior intervals [21], and a small imprecision in all the
conditional probabilities can give rise to high degrees
of imprecision in conditional probabilities that are a



function of all these conditional probabilities.

The other possible application is the global one [21].
According to it, the credal set is obtained by consider-
ing a global application of the IDM to all the variables
X. We consider the credal set given by the probabili-
ties obtained from the IDM and that factorize accord-
ing to G. When a global precise Dirichlet model is ap-
plied to X with parameters (ax)xeox, then the esti-
mated probabilities for any conditional probability of
a variable X conditional to a configuration Y =y, co-
incides with the ones obtained with a Dirichlet model
with a vector of parameters(ay y)zcqy which can be
obtained from the original vector by adding in the
non participating variables. If Z are the variables in
X —Y — {X}, then we have that a,y =3, a y .2

When considering a global application of the IDM, the
set of all conditional probability distributions for each
single variable X given a configuration of its parents
mx is the same than in the local application. But
in the global application restrictions in the param-
eters used in the different conditional probabilities.
Imagine that we have two binary variables, X and
Y, and that X is a parent of Y. If for the marginal
of X we use a Dirichlet distribution with parameters
(0tzy, iz, ), then for the conditional probability of YV
given X = x1, we have to use a Dirichlet distribution
with parameters (a,, ay,) with oy, + ay, = @z, and
for the conditional probability of Y given X = xo,
the parameters has to verify ay, + oy, = ag,. So the
parameters use in one variable impose restrictions in
the parameters used in the rest of variables. As a
consequence, the joint credal set is not the one ob-
tained by selecting an arbitrary conditional probabil-
ity for each variable given its parents and multiply-
ing them. We have to take into account the exist-
ing restrictions between the parameters which impose
restrictions into the conditional probabilities for the
different variables.

In the following section, we will show that it is pos-
sible to locally express the associated credal net, but
there is an important problem: the decision variables
are continuous and so we have to solve an optimiza-
tion problem with continuous variables, which is not
simple in general, and for which we do not know any
paper reporting an implementation of a general algo-
rithm to compute upper or lower conditional probabil-
ities. Only Zaffalon [21] has reported an algorithm for
the case of a Naive graph to compute the dominance
relationship.

What we propose here is a modification of the IDM
model that we will call the extreme IDM. In the ex-
treme IDM, instead of considering all the prior Dirich-

let with S =} o o, for a given S, only the ex-

treme ones are considered: one for each xg € Qx given
by parameters (o )zeqy, Where o, = S, if z = g
and 0.0, otherwise. This density will be called the
extreme density concentrated in value zo with sam-
ple size S. These prior densities on the parameters
are improper densities, i.e. their integral is not equal
to 1.0, but infinite. Their use has been justified by
the estimation they produce of the posterior proba-
bilities after a sample. Some of them are the limit
of proper density functions and have a simpler inter-
pretation. Above density can be considered as the
limit when e approaches to 0 of the densities with pa-
rameters (af)zeqy, where af, = S, if © = g and e,
otherwise. The estimation of the future probabilities
will be the limit of the estimation with the proper
densities when epsilon tends to 0. When we consider
the parameters a, = 0.0,Vx € Qx, the estimation we
obtain for future probabilities coincide with the max-
imum likelihood estimation (relative frequencies), i.e.
P(z) is estimated by N, /N.

The main fact about the new model is that instead of
considering all the infinite densities determined by a
simple size S, we only consider the extreme ones, in
which all the sample size is concentrated in only one
element3. This gives rise to one density for each one
of the possible value of X.

When considering the extreme IDM for the estimation
of future probabilities of a single variable X, what
we obtain as estimation for P(z) is the same interval
than in formula (2). This is immediate, as the upper
and lower limits of the intervals are obtained in the
extreme densities. The densities in which the param-
eters are not concentrated in only one point, produce
inner values of the intervals (2).

However, in a credal net we can have differences as
we take into account the independence relationships
represented by the graph. In general, we obtain inter-
vals which are included into the intervals associated
to the use of the global original IDM.

The global application of the extreme IDM with pa-
rameter S to a graph G and set of variables X is
given by the credal set which is equal to the convex
hull of all the probability distributions that factorizes
according to the graph with conditional distributions
obtained in the following way:

1. Consider a value xg € Qx.

2. For each variable X and each conditional configu-
ration of its parents 7wx, estimate the probability
distribution of X given this configuration in the
following way:

3We consider that the use of improper densities is not es-
sential for the extreme model.



(a) If the configuration mx coincides with x¢ in

the set of parents of X then P(x|rx) is equal
to Nemx +S

~ —7g if the value of X in configuration
X

Xq is equal to x, and equal to ]f,vz’"j_‘s, oth-
. . 7TX

erwise; where N, is the frequency of con-

figuration 7mx in the sample, and N, . the

frequency of cases in which we have config-

uration mx and X = z in the sample.

(b) If the configuration mx does not coincide
with xg in the set of parents of X then

. Nony
P(z|rx) is equal to oo

What we do is to consider all the extreme densi-
ties, one for each value xo € 2x given by parame-
ters (ax)xeax, where ax, = S and 0.0, otherwise.
With this vector of parameters, all the conditional
probabilities are estimated. For a variable, X, and a
configuration of its parents, 7y, if Xg coincides with
this configuration in the set of parents of X, then the
conditional probability about X is estimated with the
extreme density concentrated in the value of X in con-
figuration xy with parameter S. If xg does not coin-
cide with this configuration in the set of parents of X,
then we have to estimate the conditional probability
with a vector of values which are all equal to 0.0, i.e.
we apply maximum likelihood estimation. If applying
the maximum likelihood estimation N, = 0, then
the estimation of the probability is not defined. We

will consider the uniform distribution in this case®.

Example 1 We are going to show the differences be-
tween the global IDM model and the extreme IDM
model in a very sample case.

Assume three binary variables X,Y,Z and a single
credal network in which X is a parent of Y and Z (as
a Naive Bayes in which X is the root node). Consider
a sample of size equal to 2 with observations:

X |Y | Z
1| Y1 | 21
T2 | Y1 | 21

Assume that we apply the extreme global IDM with
global sample size S = 2 to estimate the conditional
probabilities and we want to compute the upper prob-
ability of X = x1 gwen thatY = y1,Z = z1. This
probability, P(x1|y1,21) is obtained by maximizing the
result of Bayes rule, that taking into account the ex-
isting conditional independence relationships can be
expressed as:

4Any conditional probability distribution will give rise to
the same joint distribution, as these values are going to be
multiplied by 0.0.

P(y1|$1)-P(21|$1)-P($1)
P(y1|$1)-P(21|$1)-P($1) +P(y1|$2)-P(21|$2)-P($2)

The upper value with extreme prior densities is 0b-
tained when these probabilities are estimated with pa-
rameters Oz, y, ., = 2 and 0.0 otherwise, and the
value of the upper probability is 0.75 (the value is ob-
tained by estimating the probabilities with relative fre-
quencies from a sample obtained from the original one
by adding two cases in which X = x1,Y = y1, 2 =
z1). This upper limit can be also obtained with an-
other extreme parameter: Gz, y, ., = 2 and 0.0 other-
wise.

If we consider the global IDM model, then more sets
of parameters are allowed, and not only those concen-
trated in only one configuration of values. In partic-
ular, we can have o,y 21 = 1, Gy ys,2o = 1 and 0.0
otherwise. If we compute the conditional probability
using this set of parameters (using relative frequen-
cies to a sample in which two new cases are added:
one in which X = x1,Y = y1,Z = 21 and other in
which X = 29, Y = yo, Z = 29) we obtain a value of
0.8, which is the upper limit of the interval. So, in
this case, when applying the global model, the upper
limit is greater than when using the restricted model.

To give an idea of the differences between the two mod-
els, let us generalize above situation: imagine that we
have a Naive Bayes model with X as root node and
a number n of children variables (n = 2 in previous
case). Assume that we also have a sample of size 2
similar to the above one (one in which X = z1 and
another in which X = xo and in both of them the first
case of the remaining variables is observed), and that
we want to compute the upper probability of X = xq
conditioned to the first case of each variable. With
variable, there is no difference between the models.
With n = 3 the difference is very small, and with
n > 4 both models produce again the same result.

4 Local Specification

In this section we will show that credal networks esti-
mated with the IDM can be locally specified. First we
will start with the complete model in which it will be
necessary to use decision variables with infinite values.

Given a credal network with graph G learned with the
IDM with global sample size .S, we will consider the
following credal network:

e For each variable X with parents Ilx in
the graph, consider a decision variable Dx,
which will be a parent of X. This variable



will have as set of values the set of vectors
(Qu,rx)zey,mxen, » where az ., > 0 and

z€QX,TXx EQm Qg x

e For each configuration =wx and vector

(az_’ﬁx)zegxﬂxegnx, the conditional prob-

ability of X is given by:

Nm,ﬂ'x + aI,TFX

Nﬂ'x + STI'X

P(x|Tx, (Qr,mx )vex mxeQm, ) =

where Sy, = erszx Oy -

e Consider an order of the variables which is com-
patible with the graph G. For each variable, X,
in this order consider the set Tx = IIx U {X}.
Compute the intersections Rx,y = TxNTy with
all the variables Y preceding X in the graph.
Make as parents of Dx all the variables Dy, for
which Rx y is a non empty maximal set (there
is not another R,y including it).

e fp, is defined as a function that associates to
each configuration of its parents the set of possi-
ble values for Dx. This will be done, by deter-
mining the set of possible values for each one of
its parents and then taking the intersection for all
the parents. For a parent variable Dy and a vec-
tor belonging to its domain (ﬁy)yeQTy, the set
of possible values for Dx will be equal to the set
of vectors (ax)xeng such that > By =, ox,
where U = Ty — Rx)y, V = TX — RX7y, i.e.
the results of adding the vectors in the non com-
mon variables coincide.

With this procedure we only estimate conditional
probabilities, considering that the joint probabilities
can be obtained by multiplication. So all the proba-
bilities factorize according to G.

In this local specification, for each variable X, the do-
main for the decision variable Dx is the set of possible
parameters for the prior Dirichlet distributions if the
joint probability has global parameter S. The con-
ditional probability is determined for each parameter
vector, by doing the corresponding estimation from
the database and the given prior distribution. Fi-
nally, the role of functions fp, is to keep consistency
among parameters taking into account the existing
restrictions in the global application of the IDM. For
that, we relate the vectors of parameters Dx and Dy
if the corresponding sets of variables T'x and T x have
non-empty intersection. Consistency is achieved if
the marginalization of the vectors of parameters on
the intersection of both sets of variables is the same,
where the marginalization is computed by adding in
the variables not in the intersection (in the same way

than when computing a marginal probability). This
is based on the properties of the Dirichlet densities
(see [14, 4]).

The main problem of this description as a local net-
work is that variables Dx take values in a continu-
ous infinite set of parameters. This makes infeasible
the application of existing algorithms for computing
upper and lower conditional probabilities, which are
designed for categorical variables. In the following,
we will show that the use of the extreme IDM gives
rise to a credal network that can be locally specified
in a simple way by introducing categorical decision
variables.

In the extreme IDM we have a prior density for each
value xg9 € x, so in the posterior credal set after
observing the database we will have a joint probability
for each one of these values. We have to introduce
decision auxiliary variables able of representing these
values. This will be done by considering a decision
variable Rx for each variable X with the same set of
values than X: Qx. The set of values of variables
Rx,X € X, will represent the configuration x¢ € Qx
in which the parameter S is concentrated.

Decision variables, Rx, do not have parents.

If we have variable X with parents Iy in graph G,
we add links from each variable Ry where ¥ = X
or Y € IIx to X (we extend the parents of X by
adding its decision variable and the decision variables
of its parents). Let us call Rm, the set of vari-
ables Ry where Y € IIx, and as usual (in lower-
case), rr, will represent a configuration of this set
of variables. The conditional probability of a variable
X given HX = Wx,RX =Tx and RHX = IrIy is
computed as follows:

e If for one variable Y in Ilx, the value of Y in
configuration 7y is not equal to the value of Ry
in configuration rr, , then

P(CC|7TX71'1'[X,T)() = (3)

where the conditional distribution is the uniform
if No, =0.

e If for any variable Y in IIx, the value of Y in
configuration 7wy is the same than the value of
Ry in configuration rr, , and the value of X is
the same than the value of Rx (x = rx), then

Nynx +5

No. 5 (4)

P($|7Tx,rnx,rx) =



e If for any variable Y in Ilx, the value of Y in
configuration wx is the same than the value of
Ry in configuration rr,, and the value of X is
not equal to the value of Rx (z # rx), then

Nm,ﬂ'x

No.+ S (5)

P(I|7TXarHX5TX) =

It is immediate that this specification determines the
same credal set over GG as the one defined in Section
3, taking into account that the values of variables
Rx,X € X, represent the value xg € Qx in which
the extreme Dirichlet distribution is concentrated.

One important problem of this representation is that
the number of variables in each conditional probabil-
ity is duplicated, and as the size of conditional tables
is exponential in the number of variables, then we can
have tables of quadratic size with respect to the size
of precise conditional probability tables in G. How-
ever, the size of the conditional probabilities can be
smaller if we use an appropriate representation. In
this paper we consider the use of the probability tree
representation [9, 18, 7.

A probability tree T is a directed labelled tree, where
each internal node represents a variable and each leaf
represents a non-negative real number. Each internal
node has one outgoing arc for each state of the vari-
able associated with that node. The size of a tree 7T,
denoted by size(T), is defined as its number of leaves.

A probability tree 7 on variables Y represents a po-
tential (a joint or conditional probability distribution)
in these variables h : Qy — IR(J{ if for each y € Qy
the value h(y) is the number stored in the leaf node
that is reached by starting from the root node and
selecting the child corresponding to the value of Y in
y for each internal node labelled Y.

A probability tree is usually a more compact repre-
sentation of a potential than a table. This is illus-
trated in Figure 1, which displays a potential A and
its representation using a probability tree. The tree
contains the same information as the table, but us-
ing only five values instead of eight. Furthermore,
trees enable even more compact representations to be
obtained in exchange for loss of accuracy. This is
achieved by pruning certain leaves and replacing them
by the average value, as shown in the second tree in
Figure 1.

All the necessary operations to compute with proba-
bility potentials in credal networks can be directly car-
ried out in the probability tree representation, with-
out transforming it into a table [9, 18, 7]. In the
following we give the probability tree representation
of the conditional probability distribution of a vari-
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Figure 1: A probability potential h, its representa-
tion as a probability tree and its approximation after
pruning various branches

able X in a local specification of an extreme IDM
credal network. It is built with the following proce-
dure BuildTree(T,Z,y), where 7 is the tree we are
building, Z is the set of variables from ITx we have
to consider and y the configuration of the variables
already introduced in the tree and that corresponds
to the path from the root to the present tree 7. Ini-
tially the procedure is called with 7 empty, y empty,
and Z = Ilx. It performs the following steps:

e Take a variable Z € Z, branch 7 by Z, then
branch also all its children by variable Rz. Re-
move Z from Z.

e TFor each one of the leaves 7" of the resulting tree,
consider the configuration y’ equal to y plus the
value of Z = z corresponding to this leaf.

— If for this leaf, the values of Z and Ry
are the same, then call recursively to
BuildTree(T',Z,y’), continuing with the
construction of the tree.

— If for this leaf, the wvalues of Z and
Rz are different, then call recursively to
BuildTree2(T',Z,y’").

e If Z = (), then the tree is finished by branching
by X and all its children by Rx. For all the
resulting leaves we store the conditional proba-
bility of X = z given the configuration y (that
now is a complete configuration of its parents).
This probability is computed with expressions (4)
or (5) depending on whether the leaf is obtained
for the same value of Rx and X or for different
values of these variables (in the corresponding
expressions mx is the current configuration y).

BuildTree2(T,Z,y) is a simpler procedure that ob-
tains the conditional probability when the configura-
tion of the parents is different of the configuration of
the decision variables (by maximum likelihood):



e If Z = (), then the tree is finished by branching by
X and in its leaves we store the conditional prob-
ability of X = x given the configuration y. This
probability is computed with expressions (3). As
above, in the corresponding expression, 7x is the
current configuration y.

e If Z £ (), then take Z € Z, branch the tree by Z.
Remove Z from Z.

e For each one of the leaves 7’ of the resulting tree,
consider the configuration y’ equal to y plus the
value of Z = z corresponding to this leaf. Then,
call recursively to BuildTree2(T',Z,y’).

As example, assume two binary variables X and Y for
which we have the following table of frequencies:

Y=0| Y=1
X=0|1 3
X=1]2 1

The resulting tree for the conditional probability of Y
given X and S = 2, is given in Figure 2.

It can be shown that if n is the size of a table of
X given Ilx, then the number of leaves of this tree
representation will be n. (|Qx|+ Yy ep, (1Qv] —1)).
In this example, we have represented a table of size
n = 4 with a tree of 12 leaves. This is obtained from
the following fact: the number of cases in which the
value of the decision variables coincides with the con-
ditioning configuration is n, and each one of then is
branched by Rx of cardinal |2x|. Now, each condi-
tioning variable Y defines (]Q0y |—1) branches in which
the complete probability table of size n is estimated
by maximum likelihood (no coincidence of the condi-
tioning variables and the value of parents variables).

5 Experiments

The local estimation algorithm with the extreme IDM
has been implemented in Elvira environment [10] pro-
ducing the local specification at the same time. With
this we have been able of applying the existing algo-
rithms for credal networks as the ones described in
[7] which have also been implemented in Elvira. We
have done a very simple and preliminary experiment.
We have selected a Naive Bayes graph with a class
variable and 10 attributes (all binary variables). We
have simulated samples with different sizes (from 10
to 1000). We have selected a Naive Bayes, as with
no independencies the results are the same than with
the complete IDM. So, we do the experiments with
a graph in which many independence relationships
among the variables are represented. In these con-
ditions, we have estimated the locally specified credal

network and computed the conditional probability for
the class when all the attributes have been observed.
We have considered 3 different situations: the obser-
vations are random, for each attribute we observe the
most frequent value, and finally the case in which for
each attribute we observe the least frequent value. We
report the length of the computed posterior intervals.
The intervals are computed with a simple exact dele-
tion algorithm with probability trees (see details in
[8]). The sample generation is repeated 50 times for
each sample size and set of observations and in Ta-
ble 1 we report the average and standard deviations
of the lengths interval probabilities (Evil corresponds
to random observations, Evi2 to observing the most
frequent cases, and Evi3 to observing the least fre-
quent cases).

We observe that the intervals decrease in size when
the sample size is increased. Also when we observe
the most frequent values the intervals are smaller than
when the least frequent values are observed. Random
observations give rise to intermediate intervals. In
this stage, we can not say much more, except that
the intervals are very wide with the smaller sample
size (10) but that the imprecision is small with sam-
ple sizes of 1000. To our opinion, this imprecision is
reasonable.

6 Conclusions

In this paper, we have proposed a new model to esti-
mate probabilities for a credal network. This model
is a restriction of the general IDM, where only the ex-
treme densities are considered. Its main advantage of
the new one is that the resulting credal network allows
a simple local specification with categorical decision
variables and then it is suitable for the application of
existing algorithms for the computation of posterior
intervals or dominance relationships.

We have shown the results of the imprecision in the
intervals in some very preliminary experiments. But,
really it would be necessary to carry out more tests to
see the behaviour in real classification problems and
to study the differences with the complete IDM. We
believe that the differences between the two models
are less important than the selection of parameter S
and, at present, there is no general agreement about
which is the most suitable value of S. We do not
expect meaningful differences between them. We have
also to take into account that it is possible that the
fact that the new model is more restrictive could be
compensated with a greater S (using S = 2 in all the
situations).

Another point we would like to raise is that, though
the IDM is a widely accepted model with very good



Figure 2: Tree representation of X given Y, Ry, Rx

Evil Evi2 Evi3

Tter aver. dev. aver. dev. ave. dev.

10 0.948286  0.051853 0.608757 0.251884 0.999999  4.2475E-5
20 0.814695  0.172520 0.382576 0.247139 0.983606 0.115112
50 0.573315  0.144312 0.062716 0.067052 0.968920 0.121630
100 0.326327  0.126361 0.010081 0.007831 0.869229 0.238078
200 0.170638  0.053589 0.002283 0.001472 0.656434 0.209858
500 0.063706  0.017014 | 6.9051E-4  3.4956E-4 | 0.366218 0.123964
1000 | 0.032087 0.006731 | 3.0723E-4 1.1755E-4 | 0.181275 0.051277

Table 1: Average lengths standard deviations for the posterior conditional intervals (S = 2)

theoretical properties, it is not the only possible model
for being used as prior information. In the problem
we have studied in this paper, we see that the general
model has computational problems. We also experi-
mented difficulties with the global IDM when study-
ing independence in [1] and we considered a different
more restrictive IDM as it was impossible to make
decisions about independence with the original IDM
using a generalization of Bayesian scores (there was
no dominance even with very large samples). So it is
important to investigate alternative models for prior
information, comparing their behaviour in solving dif-
ferent problems.
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