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Abstract

This paper discusses concepts of independence and their relationship with convexity as-
sumptions in the theory of sets of probability distributions. The paper offers an organized
review of the literature and some new ideas (on regular conditional independence and ex-
changeability/“strong independence”). Finally, the connection between recent developments
on the axiomatization of non-binary preferences, and its impact on “strict” independence, are
analyzed.

1 Introduction

The goal of this paper is to offer an updated analysis of independence concepts for sets of prob-
ability distributions. A review of the recent literature on independence concepts for sets of
probability distributions is presented in Section 3, where many approaches and arguments are
organized into a few related strands. The discussion about independence is so rich that it can
shed light on many other aspects of the theory of sets of distributions. Section 4 reviews the
pioneering arguments of Kyburg and Pittarelli on the behavioral justification of general sets of
probability distributions, and connects these arguments with recent work on axiomatization of
non-binary preferences. Connections between these recent results and independence concepts are
presented.

2 Convex Bayesianism and E-admissibility

Strict Bayesianism employs a single probability distribution for decision making and delibera-
tion, while convex Bayesianism employs a convex set of probability distributions for the same
purposes [46]. A convex Bayesian should take the convex hull of any given set of distributions;
the resulting convex set is the set of permissible resolutions for the conflict amongst probability
distributions.

We refer to a set of probability distributions as a credal set; if a credal set contains distributions
for variable X, then it is denoted by K(X). The same terminology and notation is used to refer
to sets of full conditional measures. (Convexity here means that if P1 and P2 are in a credal set,
then αP1 + (1− α)P2 is also in the credal set for α ∈ (0, 1).)
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The use of credal sets is often justified through partially ordered preferences. Suppose one
is to buy or sell random variables Xi; to simplify matters, suppose all Xi are real valued and
bounded. One may postulate a binary relation Â, indicating by X Â Y that “X is preferred to
Y .” If Â is a complete order, then relatively simple axioms [26] yield a representation for Â in
terms of a single probability measure P :

X Â Y iff EP [X] > EP [Y ] .

If Â is a partial order, then similarly simple axioms yield a representation for Â in terms of a set
of probability measures K [29, 64, 53]:

X Â Y iff EP [X] > EP [Y ] for all P ∈ K.

Note that any two credal sets with identical vertices produce the same Â. Interest has focused on
the unique maximal credal set that represents Â, as this credal set embodies a “least commitment”
strategy: every distribution that is allowed by Â is included in K. Indeed there has been almost
unanimous agreement that there is no behavioral reason to move beyond such maximal credal
sets as representations for partial preferences. As we will see in Section 4, Kyburg and Pittarelli
challenge such common wisdom in a clever way that has only recently been revived.

Another way to produce credal sets is through one-sided betting, a scheme that was explored
by Smith [60] and Williams [68, 69], and later investigated in great detail by Walley [64]. In this
case the lower expectation E[X] for X is interpreted as the supremum of prices one is willing to
pay so as to purchase X (Walley refers to X as a gamble). Conditions usually imposed on the
functional E are [64]:

E[X] ≥ inf X; E[αX] = αE[X] for α ≥ 0; E[X + Y ] ≥ E[X] + E[Y ] .

Any functional E[X] satisfying these conditions is the lower envelope of a set of expectation
functionals or, equivalently, any functional E[X] can be represented by a credal set. The maximal
credal set KE that represents E[X] is convex. The literature has, for the most part, accepted
that only the maximal (convex) credal set is of interest, and that smaller (nonconvex) credal sets
have no apparent behavioral justification. Again, this issue is addressed in Section 4.

There are several criteria for decision making with credal sets. To simplify the discussion,
suppose one has a set A of variables and one or more variables must be selected according to
some criterion. Each variable is interpreted as an act with consequences expressed in utiles; that
is, higher values of X are more desirable than lower values of X.

The Γ-minimax criterion selects any act with maximum lower expected value [3, 27],

arg max
X∈A

min
P∈K

EP [X] .

The maximality criterion selects any act X such that no other act Y ∈ A is preferred to X
in a binary comparison [58] [64, Sect. 3.9]. Maximality focuses on the maximal elements of the
partial order Â. That is, X is maximal if

there is no Y ∈ A such that EP [Y −X] > 0 for all P ∈ K.
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Finally, the E-admissibility criterion selects any act X that is maximal under at least one
probability measure P ∈ K [46]. That is, X is E-admissible if

there is P ∈ K such that EP [X − Y ] ≥ 0 for all Y ∈ A.

Kyburg and Pittarelli explain E-admissibility as follows [42]. Let KA(X) be the (convex) set of
probability distributions relative to which act X maximizes expected value against acts in A.
Then X is E-admissible iff

KA(X) ∩K 6= ∅.

There are other criteria for decision-making with credal sets, such as Γ-maximax and interval
dominance [61].

3 Independence concepts for credal sets

The starting point of our discussion of independence is the widely used concept of stochastic
independence: X and Y are stochastically independent if

P (X ∈ A|Y ∈ B) = P (X ∈ A) whenever P (Y ∈ B) > 0,

for all events A and B in appropriate algebras. This definition is equivalent to

P (X ∈ A, Y ∈ B) = P (X ∈ A) P (Y ∈ B)

for all events A and B in appropriate algebras.

We devote this section to an analysis of recent research on independence concepts in the
context of credal sets. Even defining independence and conditional independence appears to
be challenging. The literature is rich in results, but many questions remain open. Section 3.1
reviews the main definitions in the literature, leaving concerns about conditioning, null events,
and countable additivity to Section 3.2. Independence concepts are briefly compared in Section
3.3, and Sections 3.4 and 3.5 focus on strong independence.

3.1 Confirmational, strict, strong, epistemic independence... and others

A direct generalization of stochastic independence to the context of credal sets is strict indepen-
dence1: X and Y are strictly independent if, for all P ∈ K,

P (X ∈ A|Y ∈ B) = P (X ∈ A) whenever P (Y ∈ B) > 0.

This straightforward definition violates convexity. Consider an example of Jeffrey’s [42, Sect.
IV.B]. Take binary variables X and Y . Suppose K(X, Y ) is the convex hull of two distributions
P1 and P2 such that P1(X = 0) = P1(Y = 0) = 1/3 and P2(X = 0) = P2(Y = 0) = 2/3. Suppose
X and Y are strictly independent; hence X and Y are stochastically independent with respect to

1This term is due to Teddy Seidenfeld.
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P1 and P2. Now take the distribution P1/2 = P1/2+P2/2; we have P1/2 ∈ K(X, Y ) by convexity.
However, X and Y are not stochastically independent with respect to P1/2, as

P1/2(X = 0, Y = 0) = P1(X = 0)P1(Y = 0)/2 + P2(X = 0)P1(Y = 0)/2
= 5/18 6= 1/4 = P1/2(X = 0)P1/2(Y = 0).

The clash between strict independence and convexity is already explicit in Levi’s pioneering
work on convex Bayesianism [46, Chap. 10]. Levi defines Y to be confirmationally irrelevant to
X if

K(X|Y ∈ B) = K(X) for nonempty {Y ∈ B}, (1)

and notes that confirmational irrelevance is not the same as strict independence. Levi also states
that expectations are not affected by failure of convexity in strict independence; his implicit
message is that, as expectations are only affected by the convex hull of a credal set, one is allowed
to take the convex hull whenever necessary.

This suggests the following somewhat convoluted definition: X and Y are strongly independent
when K(X,Y ) is the convex hull of a credal set that satisfies strict independence. A more
concise description of strong independence is possible, if all credal sets are assumed closed. Using
lower/upper expectations, we have: X and Y are strongly independent iff for any bounded
function f(X, Y ),

E[f(X, Y )] = min (EP [f(X, Y )] : P = PXPY ) . (2)

In 1982 Walley and Fine called this expression, with f(X, Y ) restricted to indicator functions only,
an independent product [65]. Independent products (this restricted form of strong independence)
are adopted by Weichselberger in his theory of interval probability (under the name mutual
independence) [66, 67].

Walley later used the term type-1 product to refer to Expression (2) in his highly influential
book [64]. Walley reserves the term type-2 product to the situation where all marginals are equal.

In his book Walley also proposes a different concept, epistemic irrelevance: Y is epistemically
irrelevant to X if for any bounded function f(X),

E[f(X)|Y ∈ B] = E[f(X)] for nonempty {Y ∈ B}.

If credal sets are closed and convex, then epistemic irrelevance is identical to Levi’s confirmational
irrelevance.2 Epistemic irrelevance is what Smith refers to as independence in his pioneering
work on medial odds [60]. And when restricted to events epistemic irrelevance is similar to
what Weichselberger calls canonical independence of B to A (E[A|B] = E[A] and E[A|B] =
E[A]) [66, 67].

Epistemic irrelevance is not symmetric: Y may be epistemically irrelevant to X while X is not
epistemically irrelevant to Y [13, 64]. Walley’s clever proposal is to create a symmetric concept
out of epistemic irrelevance, following Keynes’ approach to independence [37]: X and Y are

2Definitions involving equalities among lower expectations tend to produce closed convex sets. Walley’s theory
takes lower expectations as primitives; it does not matter whether one builds a lower expectation from a closed
convex credal set or not, in the end the definitions and calculations work as if closure and convex hulls were taken
at each step (for instance, see examples in two papers co-authored by Walley [7, 13]).
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epistemically independent if Y is epistemically irrelevant to X and X is epistemically irrelevant
to Y .

Walley’s book is contemporary with Kuznetsov’s book on interval probabilities and interval
expectations [40]. Kuznetsov proposes yet another concept of independence with a nice interpre-
tation in terms of interval arithmetic.3 Denote by EI[X] the interval [E[X] , E[X]]; then: X and
Y are Kuznetsov independent if, for any bounded functions f(X) and g(Y ),

EI[f(X)g(Y )] = EI[f(X)]×EI[g(Y )],

where × is interval multiplication.4 An equivalent formulation is: for any bounded functions
f(X) and g(Y ),

E[f(X)g(Y )] = inf (EP [f(X)g(Y )] : P = PXPY ) . (3)

Expressions (2) and (3) are quite similar, particularly if the credal sets are closed. The expressions
are however not equivalent: this can be seem easily when K(X) and K(Y ) are vacuous [41], and
with more difficulty when these marginal credal sets are not vacuous [11].

Many variations on the previous definitions are possible. For instance, one might say that Y
is irrelevant to X if for any bounded function f(X),

E
[
f(X)|Y ∈ B′] = E

[
f(X)|Y = B′′] for nonempt {Y ∈ B′}, {Y ∈ B′′}.

Such a definition is not equivalent to epistemic irrelevance, and it seems too weak. For instance
we can have vacuous credal sets K(X|Y = y) for every y, and still K(X) can be a non-vacuous
credal set (even a singleton5). It seems bizarre to say that Y is then irrelevant to X.

Several other variations appeared in the literature between 1990 and 2000, and terminology
became somewhat confusing. Part of this activity was inherited from the research in Dempster-
Shafer and possibility theories, where concepts of conditioning and independence were intensely
debated during that decade.6

In 1995 de Campos and Moral tried to organized the field into a number of distinct concepts of
independence [19]. Their type-2 independence is strong independence as defined previously (that
is, each vertex of a convex K(X,Y ) satisfies stochastic independence). Their type-3 independence
obtains when K(X, Y ) is the convex hull of all product distributions PXPY , where PX ∈ K(X)
and PY ∈ K(Y ). To minimize the number of different concepts, it makes sense to consider this
type-3 independence as a special case of strong independence; indeed, often one sees the term
strong extension to refer to the largest credal set that satisfies strong independence with given
marginal sets K(X) and K(Y ). Finally, de Campos and Moral have a variation on confirmational
irrelevance: Y is type-5 irrelevant to X if

R(X|Y ∈ B) = K(X) whenever P (Y ∈ B) > 0,
3Actually, it seems that Kuznetsov adopts strong independence as the main concept of independence and

proposes his new concept as a secondary idea [41].
4If a = [a, a] and b = [b, b], a× b = [ab, ab, ab, ab].
5That is, we may have an extreme case of dilation [54], where K(X) contains a single distribution but

K(X|Y = y) is vacuous for each y. Dilation often obtains when epistemic irrelevance is adopted [13].
6Concepts of independence were created for many different definitions of conditioning and of product distribu-

tions. For instance, one may take Dempster conditioning (indicated by a subscript D in the conditioning bar) and
require P (X|DY ) = P (X, Y ) /P (Y ) = P (X) whenever P (X) > 0; that is, P (X, Y ) = P (X) P (Y ). This is related
(mathematically at least) to Shafer’s concept of cognitive independence [59, 70, 71].
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where R(X|Y ∈ B) denotes the set

{P (·|Y ∈ B) : P ∈ K(X,Y ) ; P (Y ∈ B) > 0}. (4)

The set R defined in Expression (4) is related to what Walley calls regular extension [64],7 and
is often used as a definition of conditioning [66]. The following interesting example is given by
de Campos and Moral [19]: suppose X and Y are binary, and K(X, Y ) is the convex hull of two
distributions P1 and P2 such that P1(X = 0, Y = 0) = P2(X = 1, Y = 1) = 1. Then strong
independence obtains, but neither Y is type-5 irrelevant to X, nor X is type-5 irrelevant to Y .

In 1999 Couso et al presented an influential review of independence concepts [6, 7]. They used
yet another terminology: their independence in the selection is strong independence as defined
previously, and their strong independence is de Campos and Moral’s type-3 independence. Finally,
their repetition independence refers to Walley’s type-2 product.8

3.2 Conditional independence, null events, and full conditional measures

In this section we discuss conditional independence and null events, two issues that have grown
in importance through the years, and have become a laboratory for all sorts of foundational
problems regarding credal sets.

3.2.1 Conditional independence

Any concept of independence can be modified to express conditional independence, simply by
conditioning on every value of some variable. For instance, conditional epistemic irrelevance of
Y to X given Z obtains when, for all bounded functions f(X),

E[f(X)|Y ∈ B, Z = z] = E[f(X)|Z = z] for nonempty {Y ∈ B,Z = z}.
Conditional epistemic independence is then the “symmetrized” concept. Likewise, conditional
Kuznetsov independence of X and Y given Z obtains when for all bounded functions f(X), g(Y ),

EI[f(X)g(Y )|Z = z] = EI[f(X)|Z = z]×EI[g(Y )|Z = z] for nonempty {Z = z}.
And we define conditional strict independence by imposing elementwise conditional stochastic
independence9: every probability distribution must satisfy

P (X ∈ A, Y ∈ B|Z = z) = P (X ∈ A|Z = z) P (Y ∈ B|Z = z) whenever P (Z = z) > 0.

7Regular extension is however different as it defines conditioning even if P (Y ∈ B) = 0. In regular conditioning,
one may produce different credal sets R(X|A ∩B) by conditioning first on A and then on B, and by conditioning
directly on A ∩B (thanks to Teddy Seidenfeld for pointing this out to me).

8Couso et al also discuss two other situations that are not directly relevant to the concerns of the present paper:
(1) the set K(X, Y ) is the largest set with given marginals K(X) and K(Y ) and no further constraints; (2) the set
K(X, Y ) is specified through a belief function where the joint mass assignment satisfies stochastic independence.
Recall that a belief function can always be expressed as a probability measure (the mass assignment) over the
subsets of the possibility space, plus a multi-valued mapping. Couso et al call this latter concept random set
independence (a similar concept had been called a belief function product by Walley and Fine [65]).

9Moral and Cano describe three variants on conditional strict independence [47], basically by considering ways
to extend given marginal and conditional credal sets on X and Y given Z; these alternative concepts are perhaps
better understood as forms of extension given marginal and conditional credal sets.
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We adopt the same scheme for conditional strong independence; that is, strong independence
conditional on every value z of Z.

3.2.2 Full conditional measures

This review has so far presented concepts of irrelevance/independence with little care concerning
null events; that is, events of zero probability. The usual attitude in probability theory is to
ignore null events as they almost surely do not obtain. But in the context of credal sets one
cannot ignore an event with zero lower probability but nonzero upper probability. For instance,
take confirmational irrelevance. Suppose we refuse to define a conditional credal set K(X|Y = y)
whenever P (Y = y) = 0, as for instance proposed by Giron and Rios [29]. Then it seems advisable
to modify the clause in Expression (1): Y is “irrelevant” to X if

K(X|Y ∈ B) = K(X) whenever P (Y ∈ B) > 0.

Now suppose K(Y ) is such that for each event {Y ∈ B} there is a distribution P in K(Y ) where
P (Y ∈ B) = 0. Then Y is irrelevant to any other variable!

So, we must somehow allow conditioning on events that may be null. In fact, there exists a
perfectly reasonable way to condition on null events. The solution is to resort to full conditional
measures, where one takes conditional probability as a primitive concept [24, 21]. A full condi-
tional measure is a set function P (·|·) on E × E\∅, where E is an algebra of events, such that for
events A, B in E and C in E\∅ we have

P (A|C) ≥ 0; P (Ω|C) = 1; P (A ∪B|C) = P (A|C) + P (B|C) if A ∩B = ∅; and

P (A ∩B|C) = P (A|B ∩ C) P (B|C) if B ∩ C 6= ∅.
Unsurprisingly, both Levi’s and Walley’s theories adopt full conditional measures: confirma-
tional/epistemic irrelevance/independence are defined without any clause concerning lower or
upper probability zero.

As a digression, note that once one adopts full conditional measures, it seems advisable to
base any concept of independence on conditioning instead of on product measures. For if one
requires only the product P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B) for independence, then it
may happen that X and Y are declared independent while P (X ∈ A|Y ∈ B) 6= P (X ∈ A) for
some A, B.10

Full conditional measures are extremely elegant and have been advocated for a variety of
reasons [5, 24, 30, 55], but they do have an associated cost. The usual assumption of count-
able additivity ties conditioning (in general spaces) to Radon-Nikodym derivatives; but these
derivatives may fail to be full conditional measures [57]. Characterizing the situations where
full conditional measures exist under countable additivity seems to be a hard (and mostly open)
problem [1, 39]. Even though some authors have preferred to ignore these existence problems
[8], it seems that in general one is forced into finite additivity when full conditional measures are

10A theory with full conditional measures and a “product” definition of independence has been used, for instance,
by Cowell et al [8].
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adopted [55]. This is indeed the path taken by Levi and Walley (the latter imposes additional
conditions of conglomerability on lower expectations).

In short, confirmational/epistemic irrelevance/independence seem to require a combination of
full conditional measures and finite addivity, perhaps with some assumption of conglomerability.

Strict and strong independence can also be adapted to the the specificities of full conditional
measures. Thus we are led to some new ramifications in our tree of concepts:

• Full strict irrelevance of Y to X is elementwise epistemic irrelevance of Y to X; that is,
epistemic irrelevance of Y to X for each P ∈ K. Full strict independence of X and Y now
becomes epistemic irrelevance of Y to X and epistemic irrelevance of X to Y .

• And likewise for full strong irrelevance and full strong independence.

At this point the reader may despair as it seems we are quickly exahusting the possible names
for concepts of irrelevance/independence. However, difficulties with null events have not been ex-
hausted yet. Several authors have noted that epistemic independence is a relatively weak concept
even when applied to a single full conditional measure, and for this reason various modifications
to epistemic irrelevance (for a single measure) have been proposed [12, 31, 32, 63]. It does not
seem that such modified concepts of irrelevance/independence have been applied to credal sets
yet, but they offer important paths to follow.

3.2.3 Avoiding full conditional measures

One might try to avoid the complexities of full conditional measures by adopting conditional
strict/strong/Kuznetsov independence, as these concepts can be expressed without resort to con-
ditioning. Another possibility is to take de Campos and Moral’s type-5 irrelevance as the basis
for conditional irrelevance: Y is conditionally regularly irrelevant to X given Z if

R(X|Y ∈ B, Z = z) = R(X|Z = z) whenever P (Y ∈ B,Z = z) > 0.

Conditional regular independence is then the “symmetrized” concept. It does not seem that
conditional regular irrelevance/independence have been explored in the literature.

3.3 Comparing concepts

The previous sections listed about a dozen concepts of (conditional) irrelevance/independence.
They are not identical: for instance, epistemic independence implies Kuznetsov independence
which in turn implies strong independence, but the reverse implications are false in general [11].
We note:

1. Confirmational/epistemic irrelevance/independence seem to be the most intuitive concepts
once convexity is required (an alternative is to use de Campos and Moral’s type-5 irrelevance
so as to stay away from full conditional measures).
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2. Kuznetsov independence appears as a natural generalization of the product form of stochas-
tic independence, but it is hard to imagine a behavioral justification for it.

3. Strict independence is easy to state and obviously close to stochastic independence; however
it violates convexity and the usual behavioral interpretations through partial preferences
and one-sided betting.

4. Finally, strong independence has some of the appeal of strict independence and satisfies
convexity; however it is the most difficult to justify: Why should one start with a nonconvex
concept and take the convex hull of the resulting set of measures? We examine this question
in Sections 3.4 and 3.5.

It is instructive to compare some of the properties displayed by these concepts. For instance,
we might wonder which concepts lead to laws of large numbers. This particular question has
been mostly settled by de Cooman et al [20], who have produced quite general laws of large
numbers for assumptions of epistemic irrelevance. As their results are derived from very weak
assumptions, they are valid for most, if not all, concepts of irrelevance/independence one might
contemplate. So we must look for other potential differences among concepts. One possibility then
is to investigate the graphoid properties, as these have been advocated as axioms for independence
concepts [14, 15, 49]. Graphoid properties are stated for a ternary relation (X⊥⊥Y |Z), which we
should read as “independence of X and Y given Z”. We have [28]:11

Symmetry: (X⊥⊥Y |Z) ⇒ (Y ⊥⊥X |Z)

Decomposition: (X⊥⊥(W,Y ) |Z) ⇒ (X⊥⊥Y |Z)

Weak union: (X⊥⊥(W,Y ) |Z) ⇒ (X⊥⊥W |(Y, Z))

Contraction: (X⊥⊥Y |Z) & (X⊥⊥W |(Y,Z)) ⇒ (X⊥⊥(W,Y ) |Z)

Several results on the relationship between concepts of independence and graphoid properties
can be found in the literature. Conditional strict and strong independence satisfy the graphoid
properties [9]. Conditional confirmational/epistemic independence and conditional Kuznetsov
independence fail contraction [13] even when all probabilities are positive.12

It seems that no study of graphoid properties of conditional regular independence is avail-
able in the literature. Under the assumption that all credal sets are closed and convex, and
additionally that conglomerability holds, conditional regular independence satisfies symmetry,
decomposition and weak union.13 Clearly conditional regular independence fails contraction, as
epistemic independence fails contraction even in the absence of zero probabilities.

11These properties are often called semi-graphoid properties [49].
12Moral has investigated a version of epistemic irrelevance for sets of desirable gambles (related but not equiv-

alent to credal sets), satisfying a different set of graphoid properties [48]. Also the extensions to strict/strong
independence proposed by by Moral and Cano [47] fail different sets of graphoid properties.

13Symmetry holds by definition; decomposition and weak union are proved as for epistemic independence using
conglomerability [13], because the lower expectations completely characterize the credal sets that are by assumption
closed and convex. Conglomerability is necessary: Take (W, Y ) as the product measure of a fair coin and a finitely
additive measure that imposes uniform probability over the integers [35]; then each (W, Y ) has probability zero
and (W, Y ) is conditionally regularly irrelevant to any X; but W may be conditionally regularly relevant to X.

9



As a digression, note that failure of the contraction property greatly affects the theory of
statistical models such as Markov chains and Bayesian networks [49]. Consider a simple Markov
chain W → X → Y → Z. The usual theory prescribes that any variable is stochastically
independent of its predecessors given its immediate predecessor. From this assumption, other
independences can be derived; for instance, that (W,X) and Z are conditionally stochastically
independent given Y . But if we replace stochastic independence by epistemic independence, then
it is possible to construct a Markov chain where (W,X) and Z are not conditionally epistemically
independent given Y [10, Example 1].

When events of zero probability are present, the adoption of full conditional measures leads
to additional complications. Then confirmational/epistemic independence may even fail decom-
position and weak union [13]. It should be noted that when zero probabilities are present, con-
firmational/epistemic may fail weak union even for a single full conditional measure [12, 63].
Thus, failure of weak union can be observed in full strict/strong irrelevance/independence in the
presence of events of zero probability. Besides, the known proofs of several graphoid properties
of epistemic irrelevance/independence rely on conglomerability properties that may fail when
countable additivity is discarded [12]; which graphoid properties hold under finite additivity is
an open question. There are also modified concepts of independence that save weak union but
fail contraction [12, 32]), but the study of such concepts in the context of credal sets is an open
question.

There might be other valuable ways to compare concepts of irrelevance/independence. For
instance, we might look at computational properties: what is the complexity of inference under
each one of the concepts. However there are very few results in the literature: only strong
independence has received attention [18], and some algorithms have been produced for epistemic
independence [16]. The verdict on this matter is yet to be decided.

3.4 Justifying strong independence

The previous subsections attempted to present, in a somewhat organized form, the current land-
scape concerning concepts of independence for credal sets. An important question deserves further
study: how can we keep convexity and stay close to stochastic independence? One solution is to
find ways to justify strong independence so that it can be adopted whenever necessary.

One might try to justify strong independence using what Walley calls the sensitivity inter-
pretation of credal sets [64]. Suppose several experts agree on stochastic independence among
variables but disagree on specific probability values. The experts then adopt a credal set contain-
ing distributions that factorize appropriately, plus the convex combinations of these distributions,
arguing that such convex combinations do not affect their collective preferences. However this ar-
gument fails because as shown in Section 4, these convex combinations do affect decision making
for non-binary preferences.

Besides, one might like to state independence directly, using just partial preferences, lower
expectations, credal sets; that is, without resorting to stochastic independence. A proposal to
this effect was independently derived around 2000 by Cozman [9] and by Moral and Cano [47]. To
understand the proposal, consider the following example. Take two binary variables X and Y so
that P (X = 0) ∈ [2/5, 1/2] and P (Y = 0) ∈ [2/5, 1/2]. The largest credal set K(X, Y ) satisfying
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epistemic independence has six vertices [64, Sect. 9.3.4]:

[1/4, 1/4, 1/4, 1/4], [4/25, 6/25, 6/25, 9/25], [1/5, 1/5, 3/10, 3/10], [1/5, 3/10, 1/5, 3/10],

[2/9, 2/9, 2/9, 1/3], [2/11, 3/11, 3/11, 3/11],

with vectors denoting [P (X = 0, Y = 0) , P (X = 0, Y = 1) , P (X = 1, Y = 0) , P (X = 1, Y = 1)].
Suppose we learn that P (Y = 0) = 4/9. One option is to “intersect” K(X, Y ) with the constraint
P (Y = 0) = 4/9; that is, to form a new credal set

K ′(X, Y ) = K(X, Y ) ∩ {P : P (Y = 0) = 4/9}. (5)

However, X and Y are not epistemically independent with respect to K ′(X, Y ): the distribution
[2/9, 2/9, 2/9, 1/3] belongs to K ′(X, Y ), and for this distribution P (Y = 0|X = 1) = 2/5, so
P (Y = 0|X = 1) ≤ 2/5 < 4/9 = P (Y = 0) with respect to K ′(X,Y ). Epistemic independence is
not preserved through Expression (5).

The situation just outlined reminds one of Jeffrey’s rule [34]. In Jeffrey’s rule we start with
a distribution PX,Y , we change PY but we keep the conditional distribution PX(·|Y ) intact.
Moreover, if we have a single distribution P , then X and Y are stochastically independent iff PX

does not change through Jeffrey’s rule for any change in PY and vice-versa [22, Theorem 3.3]. A
similar result holds for credal sets: suppose a new K(Y ) (or K(X)) is given and a modification to
K(X,Y ) is made by pointwise application Jeffrey’s rule; then if X and Y are still epistemically
independent after any such change, X and Y are fully strongly independent [10].

Moral and Cano follow the same idea but use a better strategy that avoids any potential
controversies on how to apply Jeffrey’s rule on credal sets [47]. They note that to produce strong
independence it is not necessary to employ arbitrary modifications to the marginal credal sets.
Their approach uses two definitions:

• Assessment E[f(X)] ≥ α [resp. E[g(Y )] ≥ β] for bounded f(X) [resp. g(Y )] is compatible
with marginal credal set K(X) [resp. K(Y )] if there is a distribution P in K(X) [resp.
K(Y )] that satisfies EP [f(X)] ≥ α [resp. EP [g(Y )] ≥ β].

• A credal set K(X, Y ) is combined with assessment E[f(X)] ≥ α [resp. E[g(Y )] ≥ β] for
bounded function f(X) [resp. g(Y )] by eliminating all distributions in K(X,Y ) that do not
satisfy the assessment.

The following theorem generalizes somewhat the basic result by Moral and Cano:

Theorem 1 Variables X and Y are conditionally fully strongly independent given Z iff they
are conditionally epistemically independent given Z after K(X,Y |Z = z) is combined with an
arbitrary collection of assessments that are compatible either with K(X) or with K(Y ) for any
value z of Z.

The proof of this theorem is obtained by following all steps in Moral and Cano’s proof of their
Theorem 2. Changes are formally small but worthy mentioning. First, note that Moral and
Cano formulate their theorem so as to generate the largest credal sets satisfying strong indepen-
dence and constraints only in marginal credal sets K(X) and K(Y ) (more precisely: they obtain

11



“strong independence” in their sense; that is, they obtain strong extension). There is no reason
to restrict attention to this situation. Second, it should be noted that conditional full strong
independence is obtained from epistemic independence; to really produce conditional strong in-
dependence the theorem must replace epistemic independence by a concept of independence that
ignores conditioning on events of zero probability. That is:

Theorem 2 Variables X and Y are conditionally strongly independent given Z iff they are con-
ditionally regularly independent given Z after K(X, Y |Z = z) is combined with an arbitrary col-
lection of assessments that are compatible either with K(X) or with K(Y ) for any value z of Z.

While Theorem 2 is a viable strategy to justify strong independence, this approach does have
a weakness. For suppose we have a credal set K(X, Y ) that satisfies several assessments and
epistemic independence of X and Y . Now we learn about a collection of new assessments on X
and on Y . Shouldn’t we just form a new credal set satisfying all assessments, new and old, and
epistemic independence of X and Y ? Theorems 1 and 2 assume that assessments are combined
without concern to the very judgement of independence we wish to preserve.

3.5 Strong independence through partial exchangeability

An alternative way to justify (at least some varieties of) strong independence is to employ ex-
changeability. In the remainder of this section we investigate this idea; it does not seem that it has
been explored yet in the literature. To simplify the discussion, countable additivity is assumed.
but similar conclusions hold if countable additivity is dropped.

To start, consider a vector of m binary variables X = [X1, . . . , Xm]. Denote by πm a permuta-
tion of integers {1, . . . ,m}, and by πm(i) the ith integer in the permutation. Denote by {X = x}
the event ∩m

i=1{Xi = xi}, and by {πmX = x} the event ∩m
i=1{Xπm(i) = xi}.

Variables X1, . . . , Xm are exchangeable when [64, Chap. 9]:14

E[{X = x} − {πmX = x}] = 0 for any permutation πm. (6)

That is, the order of variables does not matter: trading {X = x} for {πmX = x} does not seem
advantageous in the one-sided betting interpretation of E.

As noted by Walley, we have

0 = E[{X = x} − {πmX = x}] ≤ E[{X = x} − {πmX = x}]
= −E[{πmX = x} − {X = x}] = 0.

Hence every distribution in the credal set K(X1, . . . , Xn) satisfies

P (X = x) = P (πmX = x) for any permutation πm.

In words: Expression (6) implies elementwise exchangeability in the usual de Finetti’s sense [21].
14Following de Finetti, we do not differentiate between an event and its indicator function.
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Focus on a distribution P satisfying exchangeability for a moment. Suppose we have m
exchangeable variables X1, . . . , Xm and we examine the first n variables X1, . . . , Xn for n ≤ m.
These n variables are also exchangeable, and [33]

P (X1 = 1, . . . , Xk = 1, Xk+1 = 0, . . . , Xn = 0) =
m−n+k∑

r=k

(
m− n
r − k

)

(
m
r

) P

(
m∑

i=1

Xi = r

)
.

Now if an infinitely long sequence of exchangeable variables is contemplated (m →∞), de Finetti’s
representation theorem yields [33, 52]:

P (X1 = 1, . . . , Xk = 1, Xk+1 = 0, . . . , Xn = 0) =
∫ 1

0
θk(1− θ)n−kdF (θ).

Here θ is the probability of {X1 = 1}, and the distribution function F (θ) acts as a “prior” over θ.

In our setting, we have a set K(θ) of distributions F (θ), one for each distribution P ∈
K(X1, . . . , Xn). Moreover, exchangeability is a “convex” concept in the sense that if two distri-
butions satisfy exchangeability of X1, . . . , Xn, then any convex combination of these distributions
also satisfy exchangeability. Consequently, K(θ) is a convex credal set.

Thus strong independence of X1, . . . , Xn obtains when each vertex of K(θ) assigns probability
1 to a particular value of θ. As every vertex of K(X1, . . . , Xn) is a product measure with identical
marginals, we have obtained what Walley calls a type-2 product (Section 3.1). In short, we have
easily reduced a judgement of strong independence to a judgement of exchangeability plus a
condition on K(θ).15 By using suitable versions of de Finetti’s representation theorem [52], one
can extend the previous argument to non-binary variables. One can also modify the argument to
obtain “convexified” sets of Markov chains, using judgements of Markov exchangeability [23, 72].
The overall idea leads to forms of strong independence that are difficult to justify otherwise.
Besides, exchangeability leads directly to the product form of strong independence, thus avoiding
conditional distributions and issues of conditioning on events of zero probability.

With some additional imagination, the previous argument can be modified to obtain general
strong independence. Consider two binary variables X1 and Y1 such that K(X1) and K(Y1) are
different. Imagine that we observe X1 and Y1 repeatedly, creating a sequence of exchangeable
variables X = [X1, . . . , Xm] with marginals K(X1), and a sequence of exchangeable variables
Y = [Y1, . . . , Ym] with marginals K(Y1). What else could we impose on these sequences? Consider
the following judgement of partial exchangeability [4, 21, 45]:

E
[{X = x}{Y = y} − {π′mX = x}{π′′mY = y}] = 0 for any permutations π′m, π′′m.

Then, as m →∞, we have [4, Theorem 4.13] a convex set of distribution functions F (θ, ϑ) such
that for every P ,

P (X1 = x1, Y1 = y1) =
∫

[0,1]2
θx1(1− θ)1−x1ϑx2(1− ϑ)1−x2dF (θ, ϑ),

15One may even produce subsets of the strong extension by suitably choosing K(θ).
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If each vertex of this set assigns probability one to a pair (θ, ϑ), we obtain strong independence
of X1 and Y1.

This argument for strong independence of X1 and Y1 may not be as appealing as the previous
one for type-2 products, as it requires additional exchangeable sequences of observations. However
the central idea is rather simple: X1 and Y1 are strongly independence if, whatever we do to an
exchangeable sequence of observations of X1, probabilities for exchangeable observations of Y1

are not affected.

4 Set-based Bayesianism and non-binary preferences

In the previous section we examined recent work on the connection between credal sets, indepen-
dence concepts, and convexity. It is time to examine a suggestion made by Kyburg and Pittarelli
in 1992 [44]: that we should drop convexity altogether and adopt strict independence. The dif-
ficulty with this prescription is that general credal sets do not seem to enjoy a foundation on
partial preferences/one-sided betting.16 Even though Kyburg and Pittarelli did not solve this
problem completely, they did touch on a few critical elements of the solution.

The main insight here lies on the computation of E-admissible acts amongst several acts.
Kyburg and Pittarelli discuss the following example [42, Sect. IVD]. Consider a possibility space
with three states {s1, s2, s3}. Suppose a credal set contains two distributions P1 and P2 such that

P1(s1) = 1/8, P1(s2) = 3/4, P1(s3) = 1/8,

P2(s1) = 3/4, P2(s2) = 1/8, P2(s3) = 1/8,

and consider the selection of an E-admissible decision amongst acts {a1, a2, a3}, with decision
matrix

s1 s2 s3

a1 3 3 4
a2 2.5 3.5 5
a3 1 5 4.

Now with respect to P1 and P2, a1 and a3 are E-admissible but a2 is not; with respect to the
convex hull of {P1, P2}, all acts are E-admissible. That is, there is a difference between a set of
distributions and its convex hull when one chooses amongst several acts.

The amusing irony here is that E-admissibility is a concept advanced by Isaac Levi, the main
proponent of convex Bayesianism; Kyburg and Pittarelli basically take one of Levi’s proposals
against the other.

One might then ask: Can we axiomatize preferences amongst sets of acts, so as to obtain
general credal sets? This is in fact the path followed by Seidenfeld et al in important recent

16Another potential difficulty with general credal sets is the computational cost of dealing with nonconvex sets.
However, the computational experience of the last decade has shown that once independence relations are used, the
computational benefits of convexity are rather diminished (for instance, when all vertices of a credal set factorize, the
computational cost is dominated by factorization and convexity is not important [2, 25, 17]). Again, independence
appears as a central issue, albeit indirectly.
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work [56]. In a sequence of papers [36, 51, 56], Seidenfeld and colleagues have axiomatized
general credal sets using non-binary preferences.

A quick summary of Seidenfeld et al’s theory is as follows [56]. Consider a closed set A of
acts. For any subset D of A, a rejection function R identifies the subset of D containing all acts
that are not admissible within D. This subset is denoted by R(D). Now a rejection function is
coherent if R(D) is always the set of non-E-admissible acts within D, with respect to a set of pairs
of utility function/probability distributions. Seidenfeld et al impose a set of axioms on rejection
functions and prove that any rejection function that satisfies their axioms iff it is coherent [56,
Theorems 3 and 4]. To understand the kinds of axioms that are proposed, consider the first
axiom: An inadmissible act cannot become admissible (a) when new acts are added to the set
of acts; and (b) when inadmissible acts are deleted from the set of acts.17 Another axiom states
that if d ∈ R(convexhull(D)), then d ∈ R(D). That is, an inadmissible act amongst a set of
mixed acts cannot become admissible just by removing the mixtures. Three additional axioms
are imposed, paralleling the sure-thing, Archimedean and dominance axioms typically adopted
in standard decision theory [26]. The axioms are not simple to state, and perhaps an exercise
for the future is to trim down Seidenfeld et al’s theory to a small set of intuitive axioms. In
any case, their approach is entirely successful, as their axioms do yield general sets of probability
distributions.

It is convenient to explore these ideas again in the context of independence. Suppose we wish
to determine whether events A and B are strictly independent.18 Construct five acts a0, . . . , a4:

AB AcB ABc AcBc

a0 0 0 0 0
a1 1− α −α 0 0
a2 −(1− α) α 0 0

AB AcB ABc AcBc

a3 0 0 1− β −β
a4 0 0 −(1− β) β

Now these five acts serve as a test for strict independence: if we observe that for every α, β ∈ (0, 1)
such that α 6= β we have some act rejected, we can conclude that A and B are strictly independent.

Proof. Suppose otherwise; that is, suppose ∀α, β ∈ (0, 1) : α 6= β → R(a0, . . . , a4) 6= ∅ but A and
B are not strictly independent. Then there is P such that P (A|B) 6= P (A|Bc). Take α = P (A|B)
and β = P (A|Bc) and note that EP [ai] = 0 for a0, . . . , a4; so all acts are E-admissible and
R(a0, . . . , a4) = ∅, a contradiction. Note that when A and B are strictly independent, then for
each P we have EP [a0] = 0, EP [a1] = (P (A) − α)P (B), EP [a2] = (α − P (A))P (B), EP [a3] =
(P (A)− β)P (B), EP [a4] = (β − P (A))P (B), so if α 6= β we indeed have R(a0, . . . , a4) 6= ∅. 2

At this point one might consider revisiting confirmational irrelevance/independence in the
context of general credal sets. However the resulting concepts do not seem very interesting:
conditional confirmational independence then fails all graphoid properties except symmetry even
when probabilities are all positive (contraction already fails for convex credal sets; failure of
decomposition and weak union is depicted in Table 1).

17More precisely: If D2 ⊆ R(D1), then: (a) if D1 ⊆ D3, then D2 ⊆ R(D3); and (b) if D3 ⊆ D2, then
D2\D3 ⊆ R(closure(D1\D3)).

18This example is based on a very compact, but perhaps a little more difficult to grasp, example produced
by Teddy Seidenfeld. In his example strict independence is generated without any assumption on the marginal
probabilities of A and B with only four acts that have a very intuitive meaning. His derivation seems not to be
published at this point.
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1 2 3 4
P (X = 0|W = 0, Y = 0), P (W = 0, Y = 0) α, 1/4 α, 1/4 α, 1/4 β, β/2

α+β

P (X = 0|W = 0, Y = 1), P (W = 0, Y = 1) α, 1/4 α, 1/4 α, 1/4 β, α/2
α+β

P (X = 0|W = 1, Y = 0), P (W = 1, Y = 0) α, α/2
α+β α, (1−α)/2

2−(α+β) α, 1/4 β, 1/4

P (X = 0|W = 1, Y = 1), P (W = 1, Y = 1) α, β/2
α+β α, (1−β)/2

2−(α+β) α, 1/4 β, 1/4

5 6 7
P (X = 0|W = 0, Y = 0), P (W = 0, Y = 0) β, (1−β)/2

2−(α+β)
α+β

2 , 1/4 β, 1/4

P (X = 0|W = 0, Y = 1), P (W = 0, Y = 1) β, (1−α)/2
2−(α+β)

α+β
2 , 1/4 α, 1/4

P (X = 0|W = 1, Y = 0), P (W = 1, Y = 0) β, 1/4 α, 1/4 α+β
2 , 1/4

P (X = 0|W = 1, Y = 1), P (W = 1, Y = 1) β, 1/4 β, 1/4 α+β
2 , 1/4

Table 1: Failure of decomposition and weak union for conditional confirmational independence
in the context of general credal sets. Variables W , X and Y are binary, and α, β ∈ (0, 1). The
credal set K(W,X, Y ) contains only the seven distributions in the tables (one per column). Then
(W,Y ) and X are confirmationally independent, but K(X|W = w, Y = y) 6= K(X|Y = y) (failure
of weak union) and K(X|Y = y) 6= K(X) (failure of decomposition).

5 Conclusion

The present paper focused on independence concepts for credal sets, with particular attention to
issues related to convexity. Section 3 reviewed and tried to organize the existing literature on
the issue; that section also contributed with an analysis of conditional regular independence and
a proposal for connecting exchangeability with strong independence. Section 4 focused on the
use of E-admissibility to generate general sets of distributions, an idea hinted at by Kyburg and
Pittarelli, and taken to fruition by Seidenfeld et al [56].

To conclude, a few words on some notable concepts of independence for credal sets:

• Epistemic irrelevance/independence is quite intuitive and simple to state for convex credal
sets. However, it is difficult to handle computationally, and it fails the contraction property
even when all probabilities are positive. Moreover, epistemic irrelevance/independence re-
quires full conditional measures and their associated challenges (then failing other graphoid
properties when zero probabilities are present). Someone disinclined to use full conditional
measures might adopt conditional regular independence.

• Strict independence is simple to state and inherits all the familiar properties of stochastic
independence. Due to the now available axiomatization of general credal sets, strict inde-
pendence can be given behavioral substance. Someone inclined to full conditional measures
might adopt full strict independence; however, currently there is no axiomatization of gen-
eral credal sets that produces a set of full conditional measures, and future work on this
issue would be welcome.

As for strong independence, it stays uncomfortably between epistemic independence (which is
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more intuitive for convex credal sets) and strict independence (which is more general and easier
to justify). The popularity of strong independence seems to be due solely to a desire to keep at
once stochastic independence and convexity. However, we need not be so negative, as there are
situations where strong independence does make sense: for instance, when exchangeability leads
to mixtures of product measures (Section 3.5).
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